中国学术文献网络出版总库

节点文献

浅谈初中数学思想方法的教学

 

【作者】 赵惠玲

【机构】 内蒙古赤峰市克旗二中

【摘要】

【关键词】
【正文】

      数学思想是指人们在研究数学过程中对其内容、方法、结构、思维方式及其意义的基本看法和本质的认识,是人们对数学的观念系统的认识。数学教学中必须重视思想方法的教学,其理由是显而易见的。

首先,重视思想方法的教学是数学教育教学本身的需要。数学思想方法是以数学为工具进行科学研究的方法。纵观数学的发展史我们看到数学总是伴随着数学思想方法的发展而发展的。如坐标法思想的具体应用产生了解析几何;无限细分求和思想方法导致了微积分学的诞生……,数学思想方法产生数学知识,而数学知识又蕴载着数学思想,二者相辅相成,密不可分。正是数学知识与数学思想方法的这种辩证统一性,决定了我们在传授数学知识的同时必须重视数学思想方法的教学。

其次,重视思想方法的教学是以人为本的教育理念下培养学生素养为目标的需要。著名日本数学家和数学教育家米山国藏在从事多年数学教育研究之后,说过这样一段耐人寻味的话:“学生们在初中或高中所学到的数学知识,在进入社会后,几乎没有什么机会应用,因而这种作为知识的教学,通常在出校门后不到一两年就忘掉了,然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法,却长期地在他们的生活和工作中发挥着作用。” 倘若我们留意各行各业的某些专家或一般工作者,当感到他们思维敏锐,逻辑严谨,说理透彻的时候,往往可以追溯到他们在中小学所受的数学教育,尤其是数学思想方法的熏陶。理论研究和人才成长的轨迹也都表明,数学思想方法在人的能力培养和素质提高方面起着重要作用。

再次,从现实的角度看,重视思想方法的教学是提高学生解题能力的需要。如中考题:某斜拉桥的一组钢索a、b、c、d、e,共5条,它们相互平行,钢索与桥面的固定点p1、p2、p3、p4、p5中,每相邻两点等距离。(1)问至少需要知道几条钢索的长,才能计算出其余钢索的长?(2)请你对(1)中需知道的钢索给出具体的数值,并且由此计算出其余钢索的长。这是道斜拉桥背景的情景题,需要学生将其抽象出几何模型,转化为数学问题求解。该市教研员著文称,此题体现了命题者先进的数学思想及现代数学的意识,像这种好题今后还会继续出现在我市的中考数学试卷上。

那么,数学教学中如何进行数学思想方法的教学?笔者以为可着重从以下几个方面入手:

1、在概念教学中渗透数学思想方法

数学概念是现实世界中空间形式和数量关系及其本质属性在思维中的反映,人们先通过感觉、知觉对客观事物形成感性认识,再经过分析比较,抽象概括等一系列思维活动而抽取事物的本质属性才形成概念。因此,概念教学不应只是简单的给出定义,而要引导学生感受及领悟隐含于概念形成之中的数学思想。比如绝对值概念的教学,初一代数是直接给出绝对值的描述性定义(正数的绝对值取它的本身,负数的绝对值取它的相反数,零的绝对值还是零)学生往往无法透彻理解这一概念只能生搬硬套,如何用我们刚刚所学过的数轴这一直观形象来揭示“绝对值”这个概念的内涵,从而能使学生更透彻、更全面地理解这一概念,我们在教学中可按如下方式提出问题引导学生思考:(1)请同学们将下列各数0、3、-3、5 、-5 在数轴上表示出来;(2)3与-3;5 与-5 有什么关系?(3)3到原点的距离与-3到原点的距离有什么关系?5 到原点的距离与-5 到原点的距离有什么关系?这样引出绝对值的概念后,再让学生自己归纳出绝对值的描述性定义。(4)绝对值等于7的数有几个?你能从数轴上说明吗?

通过上述教学方法,学生既学习了绝对值的概念,又渗透了数形结合的数学思想方法,这对后续课程中进一步解决有关绝对值的方程和不等式问题,无疑是有益的。

2、在定理和公式的探求中挖掘数学思想方法

著名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料,不要只看书上的结论。”这就是说,对探索结论过程的数学思想方法学习,其重要性决不亚于结论本身。数学定理、公式、法则等结论,都是具体的判断,其形成大致分成两种情况:一是经过观察,分析用不完全归纳法或类比等方法得出猜想,尔后再寻求逻辑证明;二是从理论推导出发得出结论。总之这些结论的取得都是数学思想方法运用的成功范例。因此,在定理公式的教学中不要过早给出结论,而应引导学生参与结论的探索、发现、推导过程。搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。例如,在圆周角定理从度数关系的发现到证明体现了特殊到一般、分类讨论、化归以及枚举归纳的数学思想方法。在教学中我们可依次提出如下富有挑战性的问题让学生思考:(1)我们已经知道圆心角的度数定理,我们不禁要问:圆周角的度数是否与圆心角的度数存在某种关系?圆心角的顶点就是圆心!就圆心而言它与圆周角的边的位置关系有几种可能?(2)让我们先考察特殊的情况下二者之间有何度量关系?(3)其它两种情况有必要另起炉灶另外重新证明吗?如何转化为前述的特殊情况给与证明?(4)上述的证明是否完整?为什么?可见,由于以上引导展示了探索问题的整个思维过程所应用的数学思想方法,因而较好地发挥了定理探讨课型在数学思想方法应用上的教育和示范功能。

3、在问题解决过程中强化数学思想方法

许多教师往往产生这样的困惑:题目讲得不少,但学生总是停留在模仿型解题的水平上,只要条件稍稍一变则不知所措,学生一直不能形成较强解决问题的能力。更谈不上创新能力的形成。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。使学生从中掌握关于数学思想方法方面的知识,并使这种“知识”消化吸收成具有“个性”的数学思想。逐步形成用数学思想方法指导思维活动,这样在遇到同类问题时才能胸有成竹,从容对待。如:直线y=2x―1与y=m―x的交点在第三象限,求m的取值范围。方法1:用m表示交点坐标,然后用不等式求解;方法2:利用数形结合的思想在坐标系中画出图象,根据图象作答。

4、及时总结以逐步内化数学思想方法

数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识体系。要使学生把这种思想内化成自己的观点,应用它去解决问题,就要把各种知识所表现出来的数学思想适时作出归纳概括。概括数学思想方法要纳入教学计划,要有目的、有步骤地引导参与数学思想的提炼概括过程,特别是章节复习时在对知识复习的同时,将统领知识的数学思想方法概括出来,增强学生对数学思想的应用意识,从而有利于学生更透彻地理解所学的知识,提高独立分析、解决问题的能力。

通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。

  • 【发布时间】2014/1/11 17:00:38
  • 【点击频次】1036